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ABSTRACT: Since the first food database was released over one
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hundred years ago, food databases have become more diversified, Composition ﬂ::li::
including food composition databases, food flavor databases, and A Methods
food chemical compound databases. These databases provide y

detailed information about the nutritional compositions, flavor Food Artificial

molecules, and chemical properties of various food compounds. As Flavor Database Intelligence

artificial intelligence (AI) is becoming popular in every field, Al \

methods can also be applied to food industry research and R Deep
molecular chemistry. Machine learning and deep learning are Chemical Learning
valuable tools for analyzing big data sources such as food Compound Methods

databases. Studies investigating food compositions, flavors, and

chemical compounds with Al concepts and learning methods have emerged in the past few years. This review illustrates several well-
known food databases, focusing on their primary contents, interfaces, and other essential features. We also introduce some of the
most common machine learning and deep learning methods. Furthermore, a few studies related to food databases are given as
examples, demonstrating their applications in food pairing, food—drug interactions, and molecular modeling. Based on the results of
these applications, it is expected that the combination of food databases and AI will play an essential role in food science and food

chemistry.

B INTRODUCTION

With the development of food chemistry and nutrition science,
food composition and the relationship between diet and health
have received more attention. It is noticeable that nutrition
guidance and educational programs on choosing a healthy diet
are more valued than ever. In addition, the specific nutrition
requirements for certain diseases are also recent emphases.
Utilizing food composition data and developing therapeutic
diets to treat obesity and food allergies have become clinically
practical. Moreover, complete and transparent nutrition
labeling, allowing consumers to freely choose between similar
products, is considered ordinary and necessary today.'™> An
increasing number of countries have promulgated new laws
and dictated that food companies should provide clear and
correct information on food labels.” To fulfill the current needs
with respect to food data resources, information regarding food
ingredients, nutrition, and even bioactive compositions are
collected and formed into all kinds of food databases. Many
countries worldwide have designed and established food
composition databases, providing the nutritional contents of
many generic and branded foods. The first food composition
database was proposed in Germany in 1878, followed by the
United States (US) and some European countries (for
example, Denmark, the United Kingdom (UK), France, Italy,
The Netherlands, and Sweden).’ Although the detailed items
of the food composition data in these databases are diverse,
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they share similar goals: to assess health and nutritional
statuses, formulate appropriate diets for specific groups of
people, conduct epidemiological research, and develop new
products and recipes in food industries. Food databases
theoretically contain more items than drug databases, which
aim at drug discovery, adverse reaction identification, and drug
interaction determination. The diversity of the data in these
food databases is associated with the extensive ranges of
ingredients and compositions that even differ between foods of
the same type. Additionally, the chemical molecules in food
have still not been fully qualified or quantified. Therefore, with
the introduction of big data, information about food science
and food chemistry can be structured into a more organized
and searchable database and used for systematic applications
and research purposes.®

Today, the development of Al is considered a revolution
that pioneers innovations in our modern society. The
definition of AI varies across different fields. For instance, in
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Figure 1. Big data in food. Note: this graphic was created with BioRender.com.

computer science, Al refers to the development of computers
that can engage in human-like thought processes such as
learning, adapting, reasoning, and self-correction.” Al covers
any technology that enables computers or machines to mimic
human behavioral patterns and thought processes.” Machine
learning and deep learning are related but distinct subfields of
Al In short, machine learning is a broader field that includes
deep learning, but deep learning is a specialized form of
machine learning that uses neural networks to analyze complex
data.””"" Machine learning and deep learning have already
been widely used in image recognition, video processing, and
even molecular designing (such as for drug discovm’y).()’lo‘u’13

Machine learning can be considered a subfield of A, and it
approaches the problem of modeling by trying to find an
algorithmic model that can better predict the output from
input variables."* Machine learning demonstrates some critical
advantages, including automation and the continuous improve-
ment exhibited by its algorithms. The wide applications of
machine learning make it easier for users to utilize in different
fields."> Machine learning can be roughly divided into four
subtypes: supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning.'°~" The
concept of supervised learning is that the input and output data
are labeled or precategorized before executing the computa-
tion. Through the iterative optimization of an objective
function, a supervised learning algorithm learns a function
that can predict the outputs associated with new inputs.
Unsupervised learning uses unlabeled data sets, and its
algorithms are designed to find hidden or undefined patterns
in the data. Semisupervised learning combines supervised and

unsupervised methods and is useful when numerous unlabeled
and scarcely labeled data are available. Reinforcement learning
refers to goal-oriented algorithms that learn how to achieve a
complex goal or maximize a particular dimension over many
steps.

On the other hand, although machine learning has been
widely applied, deep learning has recently demonstrated more
power than machine learning.””*' As a subset of machine
learning, the concept and technique of deep learning enable
the computation of multilayer neural networks to be more
feasible and accurate. Unlike machine learning, which includes
algorithms that learn from data to predict outputs and discover
patterns, deep learning develops algorithms based on highly
complex neural networks that mimic the way a human brain
works to detect patterns in large data sets. Deep learning is
designed to automatically learn representations of data,
allowing it to make predictions based on patterns in the data
that would be difficult for humans to find."" Deep learning can
produce incredible results in computer vision, speech
recognition, text analysis, and drug research.'”””** Commonly
used deep learning approaches include recurrent neural
networks (RNN), convolutional neural networks (CNN),
and graph convolutional networks (GCN). CNN has strengths
when solving problems related to spatial data, such as images,
while RNN is more suitable for analyzing temporal and
sequential data, such as text or videos. GCN, a variant of a
graph neural network (GNN), has been developed to address
graph-structured data.”*~’

For a good machine learning model or deep learning model,
it is important to know that the data in the training set is
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representing the diversity of the chemical space and the space
for the properties that the model is supposed to learn from.””
Generally, the first step is to collect and prepare reliable data
for analysis. The quality of the data that feeds into the model
determines how accurate the model is. If incorrect or outdated
data are imported, we may have wrong outcomes or
predictions which are not relevant. The following tips are
useful while selecting data for machine learning and deep
learning: relevance (choose data that are relevant to the
problem you are trying to solve),””*" quality (ensure the data
are of high quality and free from errors, outliers, and
bias),”' ~** representativeness (the data should be representa-
tive of the population you are trying to model),””** quantity
(enough data are needed to support the complexity of the
model you are trying to build),”*>** and diversity (the data
should contain diverse examples and variations to help the
model generalize better to unseen examples).”> After data
preparation, an appropriate method or algorithm should be
chosen to develop models that are suited for different tasks.
Then, we can start training the model by feeding the prepared
data into these learning algorithms to find patterns and make
predictions. Finally, these models should be evaluated with
previously unseen data to verify their performance.

The complex compositions and various ranges of com-
pounds in foods can be structured into informative food
databases. Food compositions’ chemical information and
physicochemical properties are potentially much more
extensive than those of drugs. The lack of accurate information
on food compounds, along with relatively little experience in
beneficially applying machine learning applications or deep
learning methods to these problems, seems to be a major
obstacle in the area. Therefore, this review introduces the
publicly available big data resources concerning food
composition and chemistry and illustrates the learning
methods applied in this area (Figure 1).

B BIG DATA SOURCES

Food-related data can generally be categorized into food
compositions, flavors, and chemical compounds. Food
composition databases mainly focus on the ingredients,
nutrients, and labeling of food products. Although many
countries have their own composition database, the databases
created by organizations such as the United States Department
of Agriculture (USDA), European Food Information Resource
Network (EuroFIR AISBL), and United Nations Food and
Agriculture Organization (FAO) are all well-known and
comprehensive data sources. Food flavor databases are another
category that focuses on the molecular properties of natural
and synthetic flavor molecules. For example, one of the most
prominent flavor databases, FlavorDB, contains over 25000
flavor molecules representing an array of tastes and odors.***’
Lastly, food chemical compound databases such as FooDB
contain more than 70000 chemical compounds identified in
foods.* Several food-related databases are listed and compared
in Table 1.

Food Composition Databases. The USDA created and
has maintained one of the most well-known food composition
databases. USDA FoodData Central, formerly the USDA Food
Composition Database, has been openly accessible since
October 1, 2019. It is an integrated, research-focused data
system that comprises five distinct data sets, including
Foundation Foods, the Food and Nutrient Database for
Dietary Studies (FNDDS) 2017—2018, the National Nutrient

Database for Standard Reference Legacy Release (SR Legacy
Foods), the USDA Global Branded Food Products Database
(Branded Foods), and Experimental Foods.”” Each data set has
its purposes and attributes. First, the Foundation Foods
database offers nutrient analyses and metadata for a range of
single foods and ingredients. Sometimes, it allows users to see
agricultural information and production practices. Second, the
FNDDS database converts the food and beverages consumed
in What We Eat in America (WWEIA), the National Health
and Nutrition Examination Survey, into gram amounts and
determines their nutrient values. Next, the SR Legacy Foods
database provides the foundation for most food composition
databases in the public and private sectors, which can be used
to develop dietary guidelines or meal plans and to conduct
product labeling as a collaboration between food industry
organizations and the USDA. The Branded Foods database
comprises numerous kinds of branded food information
submitted voluntarily by the food industry. Lastly, the
Experimental Foods database focuses on research aspects and
a deeper understanding of the factors related to food
composition, such as foods under unique conditions,
experimental genotypes, or research/analytical protocols.*’ In
addition to the online search function, the food composition
information can be accessed by downloading data from the
USDA FoodData Central Web site."'

The emergence of ontology is crucial for providing linkages
among terminology for names, characteristics, chemical
compounds, newly identified components, and other relevant
features among the various information in a food database.
From philosophical concepts, ontology studies the nature of
existence, being, becoming, and reality.42 However, in
computer science and information science, ontology refers to
a formal, explicit, and detailed representation of a shared
conceptual system, which is structured and presented with
particular terminology. With ontology, humans and computers
can compare and contrast data to see if they represent the
same entities or classify their attributes and relationships
accordingly. In addition, ontology broadens the scope of Al
and machine learning by including unstructured or structured
data types, covering each aspect of the data modeling process,
and improving the quality of the data in training data sets.”

Additionally, ontology can be applied to a set of individual
facts to create a knowledge graph, a collection of entities that
express the types of relationships among them. An example of
the application of ontology to food databases is FoodOn, a
data dictionary that describes a hierarchy of over 9600 generic
food product categories.** This food branch aims to provide
unambiguous and easy-to-reference classifications and stand-
ardized information about critical ingredients, components,
and properties. Furthermore, FoodOn can be used for
reference in the research and development of machine learning
algorithms, food-related software, and other applications.
Collaborating with the global food web, FoodOn is helpful
for monitoring resources and waste in natural systems and
represents the impacts of the human food system on global
biodiversity and the integrity of the ecosystem.*

Food Flavor Databases. Flavor molecules in foods trigger
the chemical processes that produce sensations of taste and
smell and play an essential role in regulating metabolic
processes. FlavorDB, an online database developed by the
Center for Computational Biology from Indraprastha Institute
of Information Technology Delhi (IIIT Delhi) in India, was
created to integrate the multidimensional aspects of flavor
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molecules and demonstrate their molecular features, flavor
profiles, and natural source details. Unlike other flavor
databases, such as BitterDB*® and VirtualTaste®’ (including
the data from the previous SuperSweet database®), which
mainly focus on the particular aspect of flavor, FlavorDB
collects all kinds of references to compile a comprehensive
flavor database. The flavor molecule data originated from
resources such as Fenaroli’s handbook of flavor ingredients, the
FooDB online database, the arXiv preprint service, and a
literature survey. A total of 25595 flavor molecules are
recorded on the FlavorDB Web site. Among them, 2254
molecules are associated with natural entities or ingredients,
13869 are synthetic molecules, and 9472 are from uncertain
sources. The information provided by this database includes
the fundamental identity, functional groups, physicochemical
properties, 2D/3D properties, and ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties
of each flavor molecule.*

Furthermore, FlavorDB contains information regarding 33
taste receptors (sweet, bitter, sour, and umami) and 1068 odor
receptors, with a UniProt link providing more details about
each receptor. Several search interfaces were designed to make
the database more convenient for users. First, the flavor
network function allows users to explore the flavor molecules’
similarities shared among different food entities. The visual
search interface offers a graphical way to search the flavor
molecules contained in foods. In addition, users can pair two
food ingredients and examine whether they share one or more
flavor molecules. FlavorDB2, an updated and expanded version
of the original online database, has been released.* Although
the numbers of compounds and ingredients remain the same as
those in FlavorDB, more features were added in FlavorDB2,
including chemical properties, regulatory statuses, consump-
tion statistics, taste or aroma threshold values, reported uses in
food categories, and synthesis scenarios.*’

Food Chemical Compound Databases. As the most
extensive database on food constituents, chemistry, and
biology, FooDB is perhaps one of the most comprehensive
and informative online resources. FooDB was built and
supported by the Canadian Institutes of Health Research
(CIHR), the Canada Foundation for Innovation, and the
Metabolomics Innovation Centre (TMIC). The data concern-
ing each food ingredient and compound were collected from
textbooks, scientific journals, online food composition or
nutrient databases, flavor databases, and some metabolomic
databases. More than 70000 compounds and nearly 800 foods
are included in the online database, and users can search these
foods and compounds with or without filters.’”® The numbers
of compositions and nutrients are detailed on the food
interface, whereas the chemical information, classification,
ontology, physicochemical properties, and spectrum are
recorded on the compound interface. It is noticeable that the
compounds in FooDB have highly diverse physicochemical
properties, such as different partition coefficient (S log P),
topological polar surface area (TPSA), atomic mass weight
(AMW), rotatable bond (RB), hydrogen bond donor (HBD),
and hydrogen bond acceptor (HBA), relative to those in the
other three common chemical databases: namely, DrugBank,
GRAS, and ZINC.”! FooDB users can search for information
in this database in many different ways. For instance, they can
browse by food source, name, descriptor, or chemical
compound.

Moreover, the ChemQuery Search function allows users to
find the target compound after inputting the desired structure
or molecular weight. In contrast, the Spectra Search function
uses the mass (m/z) and intensity corresponding to one peak
per line on the mass spectrum to find the target compound.
The applications of FooDB are diverse. Apart from information
searching, the data in FooDB can be combined with other
tools to investigate the possible bioactive compounds in foods
and predict the interactions between food chemical com-
pounds and protein targets in the human body.””*” The results
can help users investigate and develop new pharmaceuticals,
nutraceuticals, and personalized dietary plans.

B LEARNING METHODS

Many machine learning and deep learning algorithms have
been proposed in the past few decades, and some of them can
be utilized for food science research. To deal with complex
problems more effectively and ensure the representativeness of
the input data, there are various ways to approach generating
features representing structural information from graphs,
words, etc. For example, embedding methods can preprocess
and turn graphs or words into a computable format to exploit
them by machine learning or deep learning algorithms. Each
learning method has its features, applications, and advantages
or disadvantages. The following paragraphs and Table 2
illustrate several commonly used machine learning and deep
learning methods with potential applications in food database
research.

Machine learning refers to a broad set of algorithms that can
automatically detect patterns in data and then use those
patterns to make a prediction. Many machine learning
algorithms have also been developed to address different
needs. The common approaches include support vector
machine (SVM), random forest (RF), and decision tree
(DT) based algorithms such as Iterative Dichotomiser 3
(ID3), C4.5.

Support Vector Machine (SVM). SVM, categorized as a
supervised learning method, is an algorithm that analyzes data
for classification and regression analysis. By mapping samples
into a higher-order feature space, SVM finds a linear
hyperplane with a gap that can separate those samples. New
inputs are mapped into the particular feature space, and which
side of the hyperplane they fall into is then determined. SVM
has been used to solve real-world problems, such as image
detection and classification, text and hypertext categorization,
drug discovery, and other bioinformatics applications.”*™>°
SVM is generally unaffected by small data changes and
generalizes data efficiently. However, SVM underperforms on
larger data sets, on overlapping target classes, or in cases when
the number of features for each data point exceeds the number
of training data samples.>”

Decision Tree (DT). DT method is an open-box model
that constructs a binary tree containing decision nodes and
branches. It can be used for both classification and
regression.”® While nodes represent the attributes in a group
to be classified, branches represent the values taken.'® DT
seeks to find the best split for subsetting the given data, and
they are typically trained through algorithms such as ID3, C4.5,
and the classification and regression tree (CART).*”® In data
mining, DT can also be described as a combination of
mathematical and computational techniques that aid in the
description, categorization, and generalization of a given data
set. Since DT mimics the decision-making process, its main
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are recurrent cycles over time or a sequence. The training
process of the RNN algorithm minimizes the difference
between the output and input target pairs by optimizing the
network weights.63 Derived from feedforward neural networks,
RNN uses its internal state memory to process variable-length
sequential data. While traditional deep neural networks assume
that inputs and outputs are independent of each other, the
RNN algorithm results depend on the sequence’s prior inputs.
This algorithm applies to ordinal or temporal problems, such
as machine translation, language modeling, and handwriting or
speech recognition.”*”®” RNN is modeled to remember each
piece of information throughout the period, which is very
helpful in any time series predictor. Even if the input size is
enlarged, the model size does not increase. However, the
model training process can be time-consuming and challeng-
ing, and the gradient vanishin§ and gradient exploding
problems are potential concerns.’

Convolutional Neural Network (CNN). CNN, a
dominant ANN in various computer vision tasks, is designed
to process data with grid patterns by automatically and
adaptively learning the spatial hierarchies of features.
Generally, the CNN method consists of three layers:
convolution layers, pooling layers, and fully connected layers.
While the first two layers are used for feature extraction, the
last layer connects all activations and produces the output.”’
Regarding text recognition tasks, CNN aims to learn feature
representations for a fixed-size context and quickly increase the
adequate context size by stacking several layers, providing a
shorter path than an RNN to better model the sequential
dependences between the characters in the given text.”’ The
CNN algorithm is suitable for image recognition, video
analysis, disease evaluation, drug or biomarker discovery, and
research in many other fields.”””'~”* Although CNN does not
encode the positions and orientations of objects when
performing image recognition, it is considered computationally
efficient and highly accurate, with better model interpretability.
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Table 2. Common Machine Learning and Deep Learning Methods
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Provide computational tools
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Flavor Food
Database Big Data

N

Chemical
Compound
Database
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include SVM, DT,

Machine RF...
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Deep

Learning Common methods
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CNN, GCN...

Provide accessible data sources

Example of applications:

* Food pairing

* Food-drug interaction

* Food compound bioactivity research

* Food molecular modeling

* Food images and recipe recognition

Figure 2. Concept of machine learning and deep learning in food data.

Graph Convolutional Network (GCN). A graph neural
network (GNN) is a type of deep learning method that mainly
focuses on graph analysis. Among the variants of GNN, GCN
has demonstrated groundbreaking performances in many deep
learning tasks. As an approach for performing supervised
learning on graph-structured data, GCN employs weighted
nodes to make decisions that mimic those of brain neural
networks, generating predictions over physical systems, such as
graphs, interactive approaches, and applications.74 It also
provides accurate information about the properties of real-
world entities and physical systems. For example, one of the
critical GCN applications is molecular property prediction in
chemistry. By extracting features from simple graph structure
descriptions, GCN can form molecular-level representations
that are used as fingerprint descriptors. In addition, the GCN
method is an emerging tool for predicting polypharmacy side
effects by modeling protein—protein interactions and drug—
protein interactions. Overall, GCN has tremendous expressive
power for learning graphic representations and achieves
superior performance in various tasks and applications.”®”>~"

B APPLICATIONS

Many studies have been conducted with information obtained
from various food databases. With abundant and multiple data
sources, the content in food databases can be effectively
analyzed and computed with different machine learning or
deep learning methods (Figure 2). Furthermore, combining

food databases and learning methods helps resolve problems
such as food pairing, food—drug interactions (FDIs), and
molecular modeling. Several specific tools other than tradi-
tional learning methods are also incorporated into these
studies, including graph embedding, link prediction, and
dimensionality reduction. Therefore, in this section, we review
and demonstrate some studies to show the practical
applications of food databases and learning methods.

Food Representations and Food Pairings. Food
representations and pairings are considered critical topics in
food science and are essential in cooking. Previous studies have
tried improving the efficiency and quality of food representa-
tions and pairings through chemical-based approaches. Since
the biochemical data of different food ingredients are of great
complexity and diversity, the lack of accurate and detailed
information makes it difficult to construct precise food
representations. The second strategy is the recipe-based
approach that is based on the statistical co-occurrence
among many recipes. Chemical compound data are not
considered when creating food representations and recom-
mending food pairings. FlavorGraph, a large-scale network
graph built from the recipes and chemical relations of food
ingredients and chemical compounds, was introduced to
improve the performance of food clustering and recommend
food pairings.”®

The FlavorGraph data were extracted from information in
Im2recipe, FlavorDB, and HyperFoods, which were con-
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structed into three types of nodes (food ingredients, flavor
compounds, and drug compounds) and three types of edges
(food ingredient—food ingredient relations, food ingredient—
flavor compound relations, and food ingredient—drug com-
pound relations).””””* The graph embedding method used
for constructing similar representations of heterogeneous
nodes based on commonly linked nodes is called meta-
path2vec. This meta-path-guided random walk strategy is
capable of capturing both the structural and semantic
correlations of differently typed nodes and relations, further
improving the accuracy of food pairing recommendations.”' By
utilizing a graph embedding method and neural network
algorithm, the food representation neural network learned the
food—chemical molecule relations and the relations between
the ingredients in many recipes. With an extra chemical
structure prediction (CSP) layer, more details about chemical
structural information were added to the original model, and
this compound—ingredient relation was expected to generate
more significant node representations.

One of the valuable functions of FlavorGraph is that it can
recommend complementary and novel food pairings in
cooking based on multiple learned food representation vectors.
Unlike KitcheNette, another food ingredient pairing model,
FlavorGraph includes chemical information about food
ingredients and predicts pairings more accurately.”” Moreover,
FlavorGraph can predict flavor compound—food relations with
its similarity search function. Flavor compounds are molecular
substances with various flavors, such as fruity, bitter, fatty,
floral, etc. Flavor compound—food relations can help clarify the
chemical effects of flavor ingredients on other food ingredients.
The study identified six new flavor compound—food relations
that demonstrate promise for future culinary practice.

Food—Drug Interactions (FDIs). Research on drug—drug
interactions (DDIs) and drug—target interactions (DTIs) has
already been comprehensively explored and studied. Never-
theless, some studies have demonstrated the impacts of certain
foods on the activities of different drugs by increasing drug
metabolism, decreasing drug bioavailability, or creating adverse
effects. Similar to DDIs, the mechanisms of FDIs can be
classified into two primary categories: pharmacokinetic (PK)
interactions and pharmacodynamic (PD) interactions. In
addition to the FDIs that have been thoroughly investigated,
the identification of potential unknown FDIs is crucial for
ensuring treatment effectiveness and safety.

A systematic framework called FDMine was proposed to
predict new FDIs and examine the possible pharmacological
effects of food compounds.*” The raw data extracted from the
FooDB and DrugBank database were used to build a
homogeneous network based on a structural similarity profile,
with nodes representing drugs, foods, and compounds.”***
Link prediction algorithms can predict the existence of a link
between two entities in a network. Several neighborhood-based
similarity-based link prediction algorithms are implemented in
this study, such as Adamic and Adar coefficient (AA), common
neighbor (CN), Jaccard coefficient (JAC), resource allocation
(RA), multiple paths of length L = 3 (L3), and dice coefficient.
The links in FDMine were weighted by similarity and
contribution scores. To evaluate the performance of different
link prediction algorithms applied in the framework, 70% of
links were randomly selected as training data sets, whereas the
remaining links were used as test data sets to verify the
accuracy of the algorithms. All neighborhood-based similarity-

based methods (except L3) achieved more than 80% area
under the receiver operating characteristic curve (AUROC).

Some novel FDIs have been discovered with FDMine,
providing valuable information to physicians and researchers.
For instance, foods such as garden onions contain fatty acids
with anti-inflammatory effects, including oleic acid and elaidic
acid. In addition to interacting with PPAR receptors to
decrease prostaglandin production, these foods also cross the
blood—brain barrier and interact with GABA receptors to
elevate overall GABA levels, further inducing anxiolytic and
possible antiepileptic effects. These mechanisms imply a
synergistic relationship between drugs such as vigabatrin and
foods such as garden onions, pomegranates, pineapples, and
peanuts. Another FDI case concerns the interaction between
beta-adrenergic antagonists and food components that possess
vasodilation pharmacological effects, including p-cymene,
eugenol, and carvacrol. Cloves, hyssops, and anises are some
of the common substances that contain these compounds. The
result of such an interaction may cause smooth muscle
vasodilation and more pronounced antihypertensive effects.
The investigation of FDIs makes it more likely to avoid some
potentially detrimental effects when taking medications.

Molecular Modeling. Notably, the biological properties of
food compounds have also been investigated at the molecular
level. Unlike drug molecules, where a number of guidelines
have been proposed to investigate their physicochemical
properties, the specific molecular descriptors of food chemicals
have not yet been developed. Both quantitative and visual
approaches have been utilized to analyze the chemical space of
food molecules, and the potential associations between
molecular structure, flavor, and odor are still being investigated
currently.”> A recent study that aimed to investigate the
binding modes and the chemical spaces of hop-derived
compounds demonstrated the utilization of food databases in
bioinformatics and chemoinformatics.*® As compounds with
favorable bitter tastes in beer, hop-derived compounds
typically bind with three bitter taste receptors: TAS2RI,
TAS2R14, and TAS2R40. These compounds modulate the
dynamic conformational changes exhibited by TAS2R
receptors, allowing for further signal transmission. In this
study, a knowledge-based homology modeling approach, with
sequence alignment of TAS2R1, TAS2R14, and TAS2R40, was
used to construct the three-dimensional (3D) structures of the
TAS2R models. A total of 11 hop-derived compounds were
included. The chemical information about these hop-derived
compounds and other bitter compounds was obtained from
BitterDB, FooDB, and DrugBank.Sg’M’87 The molecular
similarity was computationally evaluated and visualized by t-
distributed stochastic neighbor embedding (t-SNE), a machine
learning based algorithm used for data visualization in high-
dimensional data sets.*® Molecular docking was also used to
predict the binding modes of small molecules into protein
targets at physiological pH.

As a result, the binding site compositions differed between
the TAS2R receptors, and the sequence identity was lower in
the binding site region than in the whole receptors. The
conserved asparagine at position BW 3.36 significantly
recognized the hop-derived compounds. Because of the diverse
binding site composition shapes, each receptor’s residue
interaction pattern for compound recognition also varied.
The Glide standard precision (SP) score was demonstrated as
an approximation of the binding affinity of each compound
against analyzed receptors. Compared to less potent agonists,
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the result showed that more potent compounds have lower
binding energy (lower Glide SP scores) against the cognate
receptors. Although the chemical spaces of the compounds
obtained from FooDB and DrugBanks shared an overlap in a
previous study, the chemical similarity analysis showed
possible discrimination between the chemical spaces of bitter
drugs and bitter foods.”’ While comparing these bitter
compounds with hop-derived compounds on a 2D t-SNE
plot, the latter clustered in a confined space of the bitter
chemical space and further demonstrated a peculiar type of
bitter compound compared to those of known bitter drugs and

foods.

B SUMMARY AND PATHWAY FORWARD

Big data and Al have revolutionized the study of food
chemistry. In contrast to medicinal chemistry, the study of
food compound analysis is currently in full swing. With the
establishment of many food ingredient and food compound
databases, machine learning and deep learning methods are
becoming valuable tools for effectively analyzing large data sets.
In addition to attaining a better understanding of the chemical
and pharmacological properties of food ingredients and
compounds, our review suggests that more efficient solutions
are available to address problems such as food pairing, FDIs,
and molecular modeling. These applications can lead to further
progress in food science and food chemistry.

Current research applying big data and Al to food science
show promise to increase food databases’ value and the meta-
analysis and broader insights into food systems. Quantum
computing will enhance computational prowess. Recent efforts
to archive spectral libraries will provide more refined
information on food composition and new food chemicals of
interest and expand the number of known food constituents.
Coupled with the expanding databases of biological and
physical activities and the spectral databases of microcrobes,
plants and animals, there are opportunities for synergistic
benefits from this big data and Al revolution.
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